

Experimental and modelling neutron fluxes characterization of the carousel irradiation channels in the TRIGA MARK I IPR-R1 reactor, Brazil Maria Ângela de B. C. Menezes ^{1a}, Radojko Jaćimović ² Rita C.O. Sebastião^{1b}, Alexandre S. Leal^{1b}, Rose Mary M. G. P. Souza^{1b}

¹Nuclear Technology Development Centre/ Brazilian Commission for Nuclear Energy (CDTN/CNEN) ^a Laboratory for Neutron Activation Analysis, ^b Laboratory for Nuclear Measurements Belo Horizonte, Minas Gerais, Brazil

²Jožef Stefan Institute, Department of Environmental Sciences Ljubljana, Slovenia

Laboratory for Neutron Activation Analysis

1960

Since the starting up of Reactor TRIGA MARK I IPR-R1

Meeting the clients' analytical needs and researches developed by the LNAA, by CDTN and by other institutions

MAIN TASKS: ✓ carry out the routine analysis

 \checkmark optimise the routine analysis

✓ develop new analytical procedures

Matrixes analysed

instrumental and radiochemical methods

sediment

water

industrial effluent

food

air filter

soil

plant

"garimpo" materials

ceramic and clay from Amazon region

assess the exposure and contamination levels in industry

2006: carried out 1.200 samples \rightarrow 20.000 determinations

This scenery enhances the responsibility of the LNAA/CDTN in providing and assuring the quality of the measurements

Due to the commitment with the quality of the results, this Laboratory is constantly working on improving the methods applied, mainly k₀-INAA

has been applied in 90% of the all neutron activation analysis demand

In Brazil, CDTN is the only Institute that fully masters the use of the k₀-INAA and its own nuclear reactor TRIGA MARK I IPR-R1

✓ 1995 was implanted

- collaboration of Dr. Eduardo Montoya (IPEN-Peru),

ARCAL/IAEA Project

 ✓ symmetry of the core configuration and the rotary rack, no variations in neutron flux distribution in different channels were taken into account

 \checkmark average *f* and α

✓ average *thermal neutron flux*

2001: new configuration changes → to increase the power to 250kW

mechanical problem in the rotary system

it was decided to rotate the CF only when inserting samples in the irradiation channels

- ✓ 2003 was re-establish and optimised
- ✓ Hyperlab software
- ✓ KAYZERO/SOLCOI software package
- collaboration of Dr. Radojko Jaćimović as an Expert IAEA

✓ 2006
updated to Kayzero for Windows, KayWin
k₀-IAEA Dr. Radojko Jaćimović

This study describes:

 ✓ neutron fluxes characterization in several channels by experimental method, "Cd-ratio for multi-monitor",

and by simulation, Monte Carlo code

✓ comparison between both methods

CITEN Cd-ratio for multi monitor method

- ✓ AI-(0.1%)Au discs and Zr foils (99.8%)
- ✓ "bare" and "Cd-covered"
- ✓ "bare" discs irradiated for 1.5 hour and then withdrawn
- ✓ "Cd-covered" samples irradiated for 3 hours
- ✓ ¹⁹⁸Au, ^{97m}Nb and ⁹⁵Zr measured on HPGe detector
- ✓ for peak area evaluation, the Hyperlab program
- ✓ for elemental concentration and parameters f and α calculations software package KayWin
- ✓ for thermal flux determination, a home-made program

✓ MCNP-4B code

 ✓ reactor core model used in the simulation was previously developed by Dr. Dalle (CDTN's researcher)

- ✓ average thermal neutron flux for the carousel as a whole
- ✓ now, neutron fluxes in each channel

Firstly: simulation - using the KCODE card

 \textit{k}_{eff} , for the modelled core was 1.01853 \pm 0.00020

5000 neutron histories were simulated per cycle, in a total of 250 active cycles

After that: standard MCNP track length estimator

- (1) thermal flux, below 0.5 eV and
- (2) epithermal flux, 0.5 eV < E < 2 keV

Tab 1. Neutron flux characterization of irradiation channels

	Neutron Fluxes (n cm ⁻² s ⁻¹)				Deviation (in %) between "Cd-	
	"Cd-ratio for multi-monitor" method		Monte Carlo		and MCNP	
	Thermal	Epithermal	Thermal	Epithermal	Thermal	Epithermal
1	6.69 · 10 ¹¹	$\textbf{2.78} \cdot \textbf{10}^{\textbf{10}}$	$\textbf{6.77} \cdot \textbf{10}^{\textbf{11}}$	$\textbf{3.67} \cdot \textbf{10}^{10}$	-1.13	-31.84
3	$\textbf{6.55} \cdot \textbf{10}^{\textbf{11}}$	$\textbf{2.97}\cdot\textbf{10}^{\textbf{10}}$	$6.65 \cdot 10^{11}$	$\textbf{3.77} \cdot \textbf{10}^{10}$	-1.46	-26.69
7	$\textbf{6.35} \cdot \textbf{10}^{\textbf{11}}$	$\textbf{2.85}\cdot\textbf{10}^{10}$	$6.67 \cdot 10^{11}$	$\textbf{4.10} \cdot \textbf{10}^{10}$	-5.05	-43.98
10	$\textbf{5.99} \cdot \textbf{10}^{\textbf{11}}$	$\textbf{2.90} \cdot \textbf{10}^{\textbf{10}}$	$\textbf{6.90} \cdot \textbf{10}^{\textbf{11}}$	$\textbf{4.00} \cdot \textbf{10}^{10}$	-15.12	-37.99
24	$6.94 \cdot 10^{11}$	3.13 10 ¹⁰	$6.98 \cdot 10^{11}$	$\textbf{4.20} \cdot \textbf{10}^{10}$	-0.62	-34.21
25	$\textbf{6.45} \cdot \textbf{10}^{\textbf{11}}$	$\textbf{2.81} \cdot \textbf{10}^{10}$	$6.86 \cdot 10^{11}$	$\textbf{4.04} \cdot \textbf{10}^{10}$	-6.29	-43.70
29	$\textbf{7.32} \cdot \textbf{10}^{\textbf{11}}$	3.08 10 ¹⁰	$6.86 \cdot 10^{11}$	4.11 · 10 ¹⁰	6.28	-33.15
34	$\textbf{7.30} \cdot \textbf{10}^{\textbf{11}}$	2.95 10 ¹⁰	$6.73 \cdot 10^{11}$	$\textbf{4.11} \cdot \textbf{10}^{10}$	7.82	-39.43
35	$7.18 \cdot 10^{11}$	4.78 10 ¹⁰	$6.72 \cdot 10^{11}$	$\textbf{3.99} \cdot \textbf{10}^{10}$	6.39	-45.37
38	$\textbf{6.58} \cdot \textbf{10}^{\textbf{11}}$	1.25 10 ¹⁰	$6.80 \cdot 10^{11}$	$\textbf{3.88} \cdot \textbf{10}^{10}$	-3.36	-43.17
40	$6.16 \cdot 10^{11}$	$\textbf{3.01} \cdot \textbf{10}^{10}$	$6.73 \cdot 10^{11}$	$\textbf{3.61} \cdot \textbf{10}^{10}$	-9.21	-19.76
Averag (this worl	6.68 · 10 ¹¹	2.90 10 ¹⁰	6.79 · 10 ¹¹	3.95 · 10 ¹⁰		
Averag value sinc 199	$6.00 \cdot 10^{11}$	$2.50 \cdot 10^{10}$				
Ne nfiguratio (previou works	w 6.6 · 10 ¹¹ souza's results		6.6 · 10 ¹¹ Dalle's results	NC		

Tab 2. Comparison of values obtained by the "Cd-ratio for multi-

CNEN

\sim	"Cd-ratio for me	r multi-monitor" ethod	Monte Carlo simulation		
	æ	<i>f</i> , deviation from average	f, deviation from average	Δ f, %	
1	0.0016	24.02, (+4.1%)	18.43, (-7.1%)	23.3	
3	0.0010	22.02, (+1.6%)	17.63, (-2.5%)	19.9	
7	-0.0022	22.32, (+2.9%)	16.29, (+5.3%)	27.0	
10	0.0033	20.65, (-4.7%)	17.23, (-0.1%)	16.6	
24	0.0029	22.17, (-3.9%)	16.62, (+3.4%)	25.0	
25	-0.0087	22.93, (+5.8%)	16.96, (+1.4%)	26.0	
29	-0.0047	23.73, (+2.9%)	16.70, (+2.9%)	29.6	
34	-0.0006	24.78, (+7.0%)	16.38, (+4.8%)	33.9	
35	0.0011	26.14, (+11.9%)	16.83, (+2.2%)	35.6	
38	-0.0229	24.26, (+5.0%)	17.51, (-1.8%)	27.8	
40	0.0197	20.44, (-5.7%)	18.64, (-8.4%)	8.8	
Average	- <u>0.0009 ± 0.0101</u>	23.04 ± 1.74	17.20 ± 0.78	-	
Previous verage value since 1995	<u>0.0250 ± 0.0020</u>	24.2 ± 2.0	NC	-	

 \checkmark Thermal fluxes in the CF can be considered similar even with a range of deviation (0.6 to 15%) \rightarrow experimentally and by the MCNP

The literature accepts 35% deviation MCNP simulation

✓ epithermal flux determination by MCNP should be investigated

✓ 10% deviation - thermal neutron flux by "Cd-ratio for multimonitor" method and the value determined in 1995

 \rightarrow use of non-suitable monitors at that time:

- salts of Zr and Au instead of foils and -small changes in the reactor core configuration

✓ concerning MCNP, considering the carousel as a whole, and the average value obtained from the fluxes in several channels → average deviation of 4.6%

 ✓ deviation of *f* obtained by MCNP → will be investigated due to the epithermal flux influence

✓ "Cd-ratio for multi monitor" method is adequate in the determination of neutron fluxes

 MCNP simulation applied in different channels of the carousel facility is an excellent tool in the future characterization in other places in the reactor

where the experimental characterization is difficult or even impossible

Reactor Group

Neutron Activation Analysis Group

Thanks to:

Dr. Trkov and Dr. Kellett

for this opportunity

IAEA Dr. Smodiš Expert Missions - Dr. Jaćimović

Thank you!

Muito Obrigada!